Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
                                            Some full text articles may not yet be available without a charge during the embargo (administrative interval).
                                        
                                        
                                        
                                            
                                                
                                             What is a DOI Number?
                                        
                                    
                                
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
- 
            There is a critical need for community engagement in the process of adopting artificial intelligence (AI) technologies in public health. Public health practitioners and researchers have historically innovated in areas like vaccination and sanitation but have been slower in adopting emerging technologies such as generative AI. However, with increasingly complex funding, programming, and research requirements, the field now faces a pivotal moment to enhance its agility and responsiveness to evolving health challenges. Participatory methods and community engagement are key components of many current public health programs and research. The field of public health is well positioned to ensure community engagement is part of AI technologies applied to population health issues. Without such engagement, the adoption of these technologies in public health may exclude significant portions of the population, particularly those with the fewest resources, with the potential to exacerbate health inequities. Risks to privacy and perpetuation of bias are more likely to be avoided if AI technologies in public health are designed with knowledge of community engagement, existing health disparities, and strategies for improving equity. This viewpoint proposes a multifaceted approach to ensure safer and more effective integration of AI in public health with the following call to action: (1) include the basics of AI technology in public health training and professional development; (2) use a community engagement approach to co-design AI technologies in public health; and (3) introduce governance and best practice mechanisms that can guide the use of AI in public health to prevent or mitigate potential harms. These actions will support the application of AI to varied public health domains through a framework for more transparent, responsive, and equitable use of this evolving technology, augmenting the work of public health practitioners and researchers to improve health outcomes while minimizing risks and unintended consequences.more » « lessFree, publicly-accessible full text available January 1, 2026
- 
            Cell cycle plasticity underlies fractional resistance to palbociclib in ER+/HER2− breast tumor cellsThe CDK4/6 inhibitor palbociclib blocks cell cycle progression in Estrogen receptor–positive, human epidermal growth factor 2 receptor–negative (ER+/HER2−) breast tumor cells. Despite the drug’s success in improving patient outcomes, a small percentage of tumor cells continues to divide in the presence of palbociclib—a phenomenon we refer to as fractional resistance. It is critical to understand the cellular mechanisms underlying fractional resistance because the precise percentage of resistant cells in patient tissue is a strong predictor of clinical outcomes. Here, we hypothesize that fractional resistance arises from cell-to-cell differences in core cell cycle regulators that allow a subset of cells to escape CDK4/6 inhibitor therapy. We used multiplex, single-cell imaging to identify fractionally resistant cells in both cultured and primary breast tumor samples resected from patients. Resistant cells showed premature accumulation of multiple G1 regulators including E2F1, retinoblastoma protein, and CDK2, as well as enhanced sensitivity to pharmacological inhibition of CDK2 activity. Using trajectory inference approaches, we show how plasticity among cell cycle regulators gives rise to alternate cell cycle “paths” that allow individual tumor cells to escape palbociclib treatment. Understanding drivers of cell cycle plasticity, and how to eliminate resistant cell cycle paths, could lead to improved cancer therapies targeting fractionally resistant cells to improve patient outcomes.more » « less
- 
            This study demonstrates application of convolutional neural networks (CNNs) for the analysis of a unique image analysis problem in fluorescence microscopy. We employed the U-Net CNN architecture and trained a model to segment nuclear regions in images of a translocating biosensor—which alternates between the nucleus and cytoplasm—without the need for a constant nuclear marker. The modelprovided high-quality segmentation results that allowed us to accurately quantify the extent of cyclin-dependentkinase activity in a population of cells. We envision that the development of this kind of analysis tools will enable biologists to design live-cell fluorescence imaging experiments without the need for providing a constant marker for a subcellular region of interest. As a consequence, they willbe free to increase the number of biosensors measured in single cells or reduce the phototoxicity of cellular imaging.more » « less
- 
            Summary Precision medicine is an emerging scientific topic for disease treatment and prevention that takes into account individual patient characteristics. It is an important direction for clinical research, and many statistical methods have been proposed recently. One of the primary goals of precision medicine is to obtain an optimal individual treatment rule (ITR), which can help make decisions on treatment selection according to each patient's specific characteristics. Recently, outcome weighted learning (OWL) has been proposed to estimate such an optimal ITR in a binary treatment setting by maximizing the expected clinical outcome. However, for ordinal treatment settings, such as individualized dose finding, it is unclear how to use OWL. In this article, we propose a new technique for estimating ITR with ordinal treatments. In particular, we propose a data duplication technique with a piecewise convex loss function. We establish Fisher consistency for the resulting estimated ITR under certain conditions, and obtain the convergence and risk bound properties. Simulated examples and an application to a dataset from a type 2 diabetes mellitus observational study demonstrate the highly competitive performance of the proposed method compared to existing alternatives.more » « less
 An official website of the United States government
An official website of the United States government 
				
			 
					 
					
